67 research outputs found

    A weighted graph polynomial from chromatic invariants of knots

    Get PDF
    Motivated by the work of Chmutov, Duzhin and Lando on Vassiliev invariants, we define a polynomial on weighted graphs which contains as specialisations the weighted chromatic invariants but also contains many other classical invariants including the Tutte and matching polynomials. It also gives the symmetric function generalisation of the chromatic polynomial introduced by Stanley. We study its complexity and prove hardness results for very restricted classes of graphs

    Monotone functions and maps

    Full text link
    In [S. Basu, A. Gabrielov, N. Vorobjov, Semi-monotone sets. arXiv:1004.5047v2 (2011)] we defined semi-monotone sets, as open bounded sets, definable in an o-minimal structure over the reals, and having connected intersections with all translated coordinate cones in R^n. In this paper we develop this theory further by defining monotone functions and maps, and studying their fundamental geometric properties. We prove several equivalent conditions for a bounded continuous definable function or map to be monotone. We show that the class of graphs of monotone maps is closed under intersections with affine coordinate subspaces and projections to coordinate subspaces. We prove that the graph of a monotone map is a topologically regular cell. These results generalize and expand the corresponding results obtained in Basu et al. for semi-monotone sets.Comment: 30 pages. Version 2 appeared in RACSAM. In version 3 Corollaries 1 and 2 were corrected. In version 4 Theorem 3 is correcte

    Relations between M\"obius and coboundary polynomial

    Get PDF
    It is known that, in general, the coboundary polynomial and the M\"obius polynomial of a matroid do not determine each other. Less is known about more specific cases. In this paper, we will try to answer if it is possible that the M\"obius polynomial of a matroid, together with the M\"obius polynomial of the dual matroid, define the coboundary polynomial of the matroid. In some cases, the answer is affirmative, and we will give two constructions to determine the coboundary polynomial in these cases.Comment: 12 page

    On the Potts model partition function in an external field

    Full text link
    We study the partition function of Potts model in an external (magnetic) field, and its connections with the zero-field Potts model partition function. Using a deletion-contraction formulation for the partition function Z for this model, we show that it can be expanded in terms of the zero-field partition function. We also show that Z can be written as a sum over the spanning trees, and the spanning forests, of a graph G. Our results extend to Z the well-known spanning tree expansion for the zero-field partition function that arises though its connections with the Tutte polynomial

    On some algebraic identities and the exterior product of double forms

    Get PDF
    We use the exterior product of double forms to reformulate celebrated classical results of linear algebra about matrices and bilinear forms namely the Cayley-Hamilton theorem, Laplace expansion of the determinant, Newton identities and Jacobi's formula for the determinant. This new formalism is then used to naturally generalize the previous results to higher multilinear forms namely to double forms. In particular, we show that the Cayley-Hamilton theorem once applied to the second fundamental form of a hypersurface of the Euclidean space is equivalent to a linearized version of the Gauss-Bonnet theorem, and once its generalization is applied to the Riemann curvature tensor (seen as a (2,2)(2,2) double form) is an infinitisimal version of the general Gauss-Bonnet-Chern theorem. In addition to that, the general Cayley-Hamilton theorems generate several universal curvature identities. The generalization of the classical Laplace expansion of the determinant to double forms is shown to lead to new general Avez type formulas for all Gauss-Bonnet curvatures.Comment: 32 pages, in this new version we added: an introduction to the exterior and composition products of double forms, a new section about hyperdeterminants and hyperpfaffians and reference

    Algorithms for Enumerating Circuits in Matroids

    Full text link
    We present an incremental polynomial-time algorithm for enumerating all circuits of a matroid or, more generally, all minimal spanning sets for a flat. This result implies, in particular, that for a given infeasible system of linear equations, all its maximal feasible subsystems, as well as all minimal infeasible subsystems, can be enumerated in incremental polynomial time. We also show the NP-hardness of several related enumeration problems

    Ideal hierarchical secret sharing schemes

    Get PDF
    Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention from the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization deals with the properties of the hierarchically minimal sets of the access structure, which are the minimal qualified sets whose participants are in the lowest possible levels in the hierarchy. By using our characterization, it can be efficiently checked whether any given hierarchical access structure that is defined by its hierarchically minimal sets is ideal. We use the well known connection between ideal secret sharing and matroids and, in particular, the fact that every ideal access structure is a matroid port. In addition, we use recent results on ideal multipartite access structures and the connection between multipartite matroids and integer polymatroids. We prove that every ideal hierarchical access structure is the port of a representable matroid and, more specifically, we prove that every ideal structure in this family admits ideal linear secret sharing schemes over fields of all characteristics. In addition, methods to construct such ideal schemes can be derived from the results in this paper and the aforementioned ones on ideal multipartite secret sharing. Finally, we use our results to find a new proof for the characterization of the ideal weighted threshold access structures that is simpler than the existing one.Peer ReviewedPostprint (author's final draft

    On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers

    Get PDF
    We present an efficient quantum algorithm for the exact evaluation of either the fully ferromagnetic or anti-ferromagnetic q-state Potts partition function Z for a family of graphs related to irreducible cyclic codes. This problem is related to the evaluation of the Jones and Tutte polynomials. We consider the connection between the weight enumerator polynomial from coding theory and Z and exploit the fact that there exists a quantum algorithm for efficiently estimating Gauss sums in order to obtain the weight enumerator for a certain class of linear codes. In this way we demonstrate that for a certain class of sparse graphs, which we call Irreducible Cyclic Cocycle Code (ICCC_\epsilon) graphs, quantum computers provide a polynomial speed up in the difference between the number of edges and vertices of the graph, and an exponential speed up in q, over the best classical algorithms known to date

    Structure of the Partition Function and Transfer Matrices for the Potts Model in a Magnetic Field on Lattice Strips

    Full text link
    We determine the general structure of the partition function of the qq-state Potts model in an external magnetic field, Z(G,q,v,w)Z(G,q,v,w) for arbitrary qq, temperature variable vv, and magnetic field variable ww, on cyclic, M\"obius, and free strip graphs GG of the square (sq), triangular (tri), and honeycomb (hc) lattices with width LyL_y and arbitrarily great length LxL_x. For the cyclic case we prove that the partition function has the form Z(Λ,Ly×Lx,q,v,w)=d=0Lyc~(d)Tr[(TZ,Λ,Ly,d)m]Z(\Lambda,L_y \times L_x,q,v,w)=\sum_{d=0}^{L_y} \tilde c^{(d)} Tr[(T_{Z,\Lambda,L_y,d})^m], where Λ\Lambda denotes the lattice type, c~(d)\tilde c^{(d)} are specified polynomials of degree dd in qq, TZ,Λ,Ly,dT_{Z,\Lambda,L_y,d} is the corresponding transfer matrix, and m=Lxm=L_x (Lx/2L_x/2) for Λ=sq,tri(hc)\Lambda=sq, tri (hc), respectively. An analogous formula is given for M\"obius strips, while only TZ,Λ,Ly,d=0T_{Z,\Lambda,L_y,d=0} appears for free strips. We exhibit a method for calculating TZ,Λ,Ly,dT_{Z,\Lambda,L_y,d} for arbitrary LyL_y and give illustrative examples. Explicit results for arbitrary LyL_y are presented for TZ,Λ,Ly,dT_{Z,\Lambda,L_y,d} with d=Lyd=L_y and d=Ly1d=L_y-1. We find very simple formulas for the determinant det(TZ,Λ,Ly,d)det(T_{Z,\Lambda,L_y,d}). We also give results for self-dual cyclic strips of the square lattice.Comment: Reference added to a relevant paper by F. Y. W
    corecore